WINDFAL Course Hypoglycaemia

Karen Anthony Consultant in Diabetes and Endocrinology Hypoglycaemia

• What it is

• Why it happens in Type 1 diabetes

• Why it can become a problem

What is Hypoglycaemia?

 How should hypoglycaemia be defined? Not as obvious as it sounds!

Symptoms? With or without confirmation on blood glucose test?

Low blood glucose value without symptoms?

Why it happens

- Too much insulin for your body's needs.
- Because of:
 - -Too little carbohydrate for the insulin dose
 - -Exercise
 - -Insulin action not always ideal
 - -Alcohol

-Impaired responses to falling blood glucose in Type 1 diabetes

Why is it important?

- Your brain relies on glucose as a fuel.
- The brain can't store much fuel (glycogen) unlike muscles etc.
- Brain needs constant supply of glucose from the bloodstream.
- If glucose drops too low brain function is affected (once blood glucose below about 2.8mmol/l.

Response to hypoglycaemia in people without diabetes

- Multiple defences against hypoglycaemia
- Only one hormone **lowers** blood glucose
- Several different hormones can help raise blood glucose.
- Response to falling glucose triggers characteristic hierarchy of responses.
- Some of the responses cause symptoms.

Hierarchy of Responses to hypoglycaemia in people without diabetes

- 1. Shut off insulin release from pancreas. Happens at blood glucose ~4.6mmol/l
- 2. Glucagon released from pancreas causing release of glucose from liver. Occurs at blood glucose ~3.8mmol/l.
- Adrenaline released at blood glucose ~3.8mmol/l. Triggers release of glucose from liver & muscle.

All the above happens within normal blood glucose range.

Hierarchy of Responses to hypoglycaemia in people without diabetes

- 4. Symptoms due to adrenaline start at about 3.2mmol/l.
- Cognitive dysfunction begins at about 2.8mmol/l – increased reaction times and decreased accuracy.
- 6. Worsening brain function as glucose drops further. Eventually fits and coma

	No diabetes	Intensive control T1D	M All su	Ibjects
5.0	4.6mmol/l inhibition insulin secretion			
4.0	3.8mmol/l release of –glucagon			
3.0	-adrenaline 2.6-3.0mmol/l release of	3.2mmol/l onset symptoms 2.2-2.7mmol/l	2.8mmol/l cognitive	
2.0	adrenaline	onset symptoms	dysfunction begins	1.5mmol/l
1.0				-convulsions -coma
0				

What happens in Type 1 diabetes

- Unregulated insulin levels has been injected so no possibility to reduce.
- Loss of glucagon response within 5-10yr of developing diabetes.
- Impaired adrenaline response. Happens at lower blood glucose and less adrenaline is released.
 More likely after frequent hypos – avoidance of hypos can help improve adrenaline response.
- Results in hypoglycaemia unawareness
- 25x risk of severe hypoglycaemia.

ASSOCIATION BETWEEN SEVERE HYPOGLYCEMIA AND MOST RECENT HEA1c: INTENSIVE THERAPY

Reducing hypo risk and maintaining hypo awareness

- Optimise insulin regimen
 Basal bolus using insulin analogues causes fewest hypos.
 (Insulin pumps when necessary).
- Education programmes (eg WINDFAL) may help.
- Frequent blood glucose monitoring.
- Use of continuous blood glucose monitoring systems can help identify asymptomatic hypos.